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Abstract We prove the Lee-Huang-Yang formula for the ground state energy of the 3D
Bose gas with repulsive interactions described by the exponential function, in a simultane-
ous limit of weak coupling and high density. In particular, we show that the Bogoliubov
approximation is exact in an appropriate parameter regime, as far as the ground state energy
is concerned.
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1 Introduction

We consider a three dimensional system of N interacting bosons in a cubic (periodic) box
A of side length L, described by the Hamiltonian:

N
ao
Hy==3 Ait—z Y v —x)). (1.1)
i=1 0 1<i<j<N
Here x; € A,i=1,..., N, are the positions of the particles, and A; denotes the Laplacian

with respect to x;. Units are chosen such that & = 2m = 1, where m is the mass of the
particles. The interaction potential is taken to be vg,(X) = Y, .73 e *™/Ro and aq and R,
are positive constants. The Hamiltonian (1.1) operates on symmetric wave functions in the
Hilbert space L?(A", dx, - --dxy), as is appropriate for bosons.
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We are interested in the ground state energy E(N) of (1.1) in the thermodynamic
limit when N and |A| tend to infinity with the density p = N/|A| fixed, and in a weak
coupling regime ay < min{p~'/3, Ry}. The constant ay is the first Born approximation
to the scattering length @ of the potential (ap/R3)e™™/Ro, which is defined as usual as
a = limy -, o [X](1 — (X)), with v a solution to the zero energy scattering equation

“2AY(X) + %e*""/ Royr(x) =0 (1.2)
0
with boundary condition limy_,« ¥ (x) = 1. It is well known that, if ay/Ry < 1, a/ay can
be written in terms of a convergent series in powers of ay/Ry (Born series), which will be
denoted by @ = ag + ), ax, and whose first non-trivial term is given by

1 k)? 5 2
a=— /dkv() =%, (1.3)
12873 Js K2 16 Ry

where

. 8
v(k) = 2 / dx e~ M/Rog=ikx ST (1.4)
R R3

0 14 (KRy)?P
The current understanding of the properties of the ground state of (1.1) is based on the pio-
neering work of Bogoliubov [1], who developed an approximate theory of the ground state
of weakly repulsive bosons. In the regime 1 > a/Ry > W > (a/Ry)?, Bogoliubov’s
theory predicts [8] that the ground state energy Eo(N) of (1.1) in the thermodynamic limit
N, |A| — oo, with p = N/|A| fixed, satisfies

. EO(N)_ 128 3 3
N“IA‘IEOO N _4npa<l+m pa’ +o(v/ pa?) . (1.5)

This formula was first derived in [2, 3] and it is known as the Lee-Huang-Yang formula.
Our goal is to prove that the expression (1.5) is asymptotically correct in a regime such
that a < p~!/3 « Ry, that is a weak coupling and high density regime. We shall prove the
following theorem.

Theorem 1 Let Y = pa’. There exists a positive constant dyy, which can be chosen to be dy =
1/69, such that, if 0 < d < dy and a/Ry = O(Y'/>~4), then (1.5) is valid, asymptotically as
Y —0.

This result represents the first rigorous proof of the Lee-Huang-Yang formula for the
ground state energy of a weak-coupling Bose gas. We note that for d < 1/6, RS p>1and
hence Theorem 1 concerns the high density regime. Our result is not expected to be optimal.
In fact, the formula (1.5) is expected to hold even for d = 1/2, i.e., for a/R, fixed and
pa® — 0 [2, 3], but the Bogoliubov approximation is not valid in this case. The prediction
of Bogoliubov’s theory is that (1.5) should be valid for any 0 < d < 1/4, i.e., in the regime
a/Ro > \/W > (a/Ry)?. The latter condition is necessary in order that a ~ ay + a; to

the desired accuracy (i.e., up to error terms that are much smaller than agp,/ pag), and the
former is certainly needed since Eo(N)/N < 4mpay (i.e., the right side of (1.5) must be
equal to 4w pay plus a negative correction, which requires |a;| > ag,/ ,oag).

For simplicity, we shall restrict our attention to interaction potentials given by the ex-
ponential function. Our proof can be adapted to a larger class of potentials, including the
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The Ground State Energy of the Weakly Interacting Bose Gas at High 917

Yukawa potential. In our proof, however, we need the potential to be positive definite, with
a Fourier transform satisfying nice decay properties as |k| — oo (e.g., polynomial decay),
and our proof does not immediately extend beyond this class. Such restrictive condition is
not supposed to have any physical relevance, of course, and (1.5) should hold for much more
general repulsive potentials. We hope that the technical restrictions under which we proved
Theorem 1 will be eliminated in future works.

The proof of Theorem 1 will proceed in two steps: we will get upper and lower bounds
with the correct asymptotic form. The proof of the upper bound is based on a computation of
the variational energy corresponding to the Bogoliubov trial wave function, following ideas
of Girardeau and Arnowitt [6], see the next section.

The strategy of the proof of a lower bound will follow closely the one of Lieb and Solovej
in [7], where the ground state energy of bosonic jellium was investigated. We shall first
localize the Hamiltonian in boxes of size £. Using the positivity of the Fourier transform of
the exponential interaction, we shall derive a preliminary estimate on the ground state energy
and, correspondingly, on the degree of condensation in the small boxes. With this a priori
bound on the number of particles n outside the condensate, we shall be able to bound from
below the full Hamiltonian by the Bogoliubov Hamiltonian minus an error term, depending
on the a priori bound on n . The key point is that it is possible to find a scaling regime for
ap and Ry such that the new error term is much smaller than the preliminary one, as ¥ — 0.
With this improved bound on the ground state energy we shall obtain new improved bounds
on the size of fluctuations of n, that, in combination with the bounds for the ground state
energy, will allow us to conclude the desired lower bound.

2 The Upper Bound

Let us first derive an upper bound to the ground state energy, asymptotically agreeing with
(1.5). In second quantized form, the Hamiltonian Hy can be rewritten as:

. 1 -
Hy = Zkzckck + A Z v(p)ck+pc(;_pckcq, 2.1
k k.q.p

where the sums run over vectors of the form 2 v/L, v € Z3, and cf( ¢y are standard bosonic
creation and annihilation operators, associated with the canonical basis of plane waves (for
an introduction, see, e.g., [8]). Following [6], we choose the following variational state,
inspired by Bogoliubov’s approximate treatment of the weak coupling Bose gas:

1
|2p,§) =exp { 3 Z ¥ (k) (,53051( - ,3004) } [2n) 2.2)
K20
where:

(1) 192x) = (N!)"/2(c})N10) is the ground state for N’ non-interacting particles;
(2) the operator oy is the pair annihilation operator ok = cxc—_x;

n the process of writing up this paper, we learned that E.H. Lieb and J.P. Solovej managed to prove the
analogue of Theorem 1 for a larger class of repulsive potentials and in the larger regime 0 < d < 1/6 + € for
some € > 0. We thank them for communicating their results to us.
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(3) if we denote by Ny = cg ¢ the number operator associated to the constant wave function,
By is the partial isometry defined by

By'* = coNg 2, 2.3)

having the properties

BolQn) =1Qnv-2) (N22),  BilQn) =IQu42),
[Bo. Nol=2B0. By, Nol=—25y, (24)
[Bo. il =[Bo. cl]=0 (k#0);

(4) ¥ is a continuous function from R to R.

Note that |2 ) is normalized, and that the particle number is equal to N. The varia-
tional principle implies the upper bound

Eo(N) < (Qp n|Hy|Q28N). (2.5)

Following [6], after a lengthy but straightforward computation, we find that in the thermo-
dynamic limit

1'19 Hy|Q —10 - dkk2 kllk'hzk
NI—I};ON< B.NIHy| B,N)—EPV( )+ p /(271)3 + pov( )+§ »(K) | sinh” v (K)
[ dk 1 A
—p /(2;1)3 poV(k)—Eln(k) sinh v (k) cosh ¥ (K),
(2.6)
where:
d
p0=p_/%smh2wq),
dq .
100 = [ vt~ qysint @) cosh v @), @7
dq .
Iz(k)=/mv(k—q)smh v (q).
Choosing ¥ (k) = 5 tanh™" (2 we find that
st g = L2000 — VI 200k
2 VE* + 2pv(k)K? '
(2.8)
sinh (k) cosh yr (k) = . — P ®
2 /k* 4+ 2pv(k)K?

Recall that v(k) is given in (1.4), and that a/Ry = O (Y'"/>7¢). A simple calculation shows
that

po=p(1+ 0/ pad)) 2.9
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The Ground State Energy of the Weakly Interacting Bose Gas at High 919

for any d > 0. Moreover, we have the bounds

1 3 1
|11 (K)| < CPaoR m (k)| < C,an\/ paom (2.10)

for a suitable constant C. Substituting these bounds into (2.6) we find that

1
lim —(Q Hy|Q
A pas N~>c>oN< B.NIHNIS2B N)

=1- L dk <k2 + pv(k) — Vk* + 2,ov(k)k2> +o(v/pa®) (2.11)

2 p2ay Jps 2m)3

for 0 < d < 1/4. A computation [8] shows that for d > 0 the integral on the right side equals

128
al 15\/_ pao—}—()(,/pa ). (2.12)

Noting that a/(ag + a;) = O(ay/Ro)> < Y'/? for d < 1/4 this yields the desired result.

Remark The upper bound we have just derived yields the desired expression for any 0 <
d < 1/4. By suitably modifying the trial function ¥ (k) above, one can actually show that
the upper bound holds for any 0 < d < 1/2 [4]. For d = 1/2, however, the ansatz (2.2) can
not be expected to yield the Lee-Huang-Yang formula, even for the optimal choice of .

3 The Lower Bound

We shall split the lower bound into several parts. The strategy is similar to the proof of the
lower bound on the ground state energy of jellium by Lieb and Solovej in [7], and we shall
refer to their paper for several essential ingredients.

3.1 Sliding and Localizing

We start by rewriting (1.1) in the form

N
/ ao

HN=HN_47TNPQO=_§ AH_F[ E VR, (Xi — X;)
0

i=1 1<i<j<N

N 2
0
_p;/Advao(x,. —y)+7//AXA dxdvaO(x—y)], (3.1

with p = N/|A|. We shall use the sliding method of [5] to reduce the problem to a small
box.

Let #, with 0 <t < 1/2, be a parameter which we shall choose later to depend on p
in such a way that r — 0 as pRg — oo. Let x € C(‘)’O(R3) be supported in [(—1 +¢)/2,
(1 —1)/2]3,0 < x <1, with x(x) = 1 for x in the smaller box [(—1 + 2¢)/2, (1 — 2t)/2]%,
and x(x) = x(—x). Assume that all m-th order derivatives of x are bounded by C,,t™",
where the constants C,, depend only on m and are, in particular, independent of ¢. If
M eNand £ = M~'L, let x,(x) be a function on the torus A defined by y,(x) =
Y nezs X' (x + nL)). For given x we also define y > 0 by y~' = [ x(y)?dy, and note
that I <y < (1 —2¢)~3. We shall prove the following.
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920 A. Giuliani, R. Seiringer

Lemma 3.1 Let (tR, U be large enough. There exists a function of the form w(t) =
constt~' Ry/£ such that if we set R~ = RJI +w(t)/l and

wR (X, ¥) = xe(X)vr(X —¥) xe(y) (3.2)

then the potential energy satisfies

N 2
0
E VR, (Xi —Xj) —p E / dyvg,(x; —y) + 5 // dxdyvg,(x —y)
= Ja AxA

1<i<j<N
)/R dz. N
= > f { wﬁ(xi+z,xj+z)—pZ/Adyw£(xj+z,y+z)
me(l,...,.M]3 1<i<j<N j=1
1 HR
+ = p? // dxdywk (x+1z,y+1z) ¢ — Nw( ) — const N2e H/CR) (3.3)
2 AxA 20

where Qn is a cube of side length € and centered at m{f (so that the collection
{Omlmer1,...mp3 paves the torus A).

The proof of Lemma 3.1 utilizes the following lemma, whose proof will be given after the
proof of Lemma 3.1. An analogous result for the Yukawa interaction potential was proved

in [5, Lemma 2.1].

Lemma 3.2 Let K : R? — R be given by

—olz|
I
K(z)=e¢e <1 1+a)/vh(z)> 3.4

with v > > 0. Let h satisfy (i) h is a C® function of compact support; (ii) h(0) = 1; (iii) all
its m-th order derivatives, 1 <m < 6, are bounded by Ct'™™ for some constants C > 0 and
t > 0. Assume further that h(z) = h(—z) so that K has a real Fourier transform. There exists
a constant Cy (depending only on C but not on t, @ or v) such that, if min{l, w}vt > Cy,
then K has a positive Fourier transform.

Proof of Lemma 3.1 We calculate
R
);3_0 Z / — Wx Ax+1z, y+2)

dz
Z;X@(X“‘Z)UR(X_Y)XZ(Y‘FZ) —th(x—y)vze(x—y), (3.5

where we have set by, = y£ 3 x, * x,. Note that h,(x) vanishes if ||x|| > £, so we can
naturally introduce a function 4 : R> — R of compact support and vanishing outside the
cube of side 2 centered at the origin, such that i,(X) =), ;3 h(¢~'(x +nL)). Note that:
(1) h(0) = 1; (ii) & has a quadratic maximum at z = 0; (iii) / is an even C* function of com-
pact support; (iv) all m-th order derivatives of &, m > 1, are bounded by C,,t'~", where the
constants C,, depend only on m and are, in particular, independent of ¢. The function / thus
satisfies all the hypothesis of Lemma 3.2. Note also that the role of v and w in Lemma 3.2
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The Ground State Energy of the Weakly Interacting Bose Gas at High 921

are here played by ¢R;" and w(r) respectively. So, if w(t) > C,Ry¢~'t~", where C; is
the constant appearing in the statement of Lemma 3.2, we then conclude from it that the
Fourier transform of the function K (x) = e ™/®o — h(¢='x)e /R (R/Ry), is positive. Now,
defining K (x) = D nezs K(X+nL) and ¢(X) = vg, (X) — 7 (X)vr(X)(R/Ry), we note that
o(x) = K2(x) + R(x), with |R(x)| < conste™*~9/R_Because of positivity of the Fourier
transform of K,

a 1
> ‘P(Xi_xj)_p;//\ oo —y) + 50 /foA p(x —y)dxdy

1<i<j<N
N A 2 _—(L-0)/R
> —31( (0) — const N“e . 3.6)
Since K*(0) < Rw/£ + const exp(—L/Ry) this implies (3.3). O

Proof of Lemma 3.2 We write h(z) = 1+ q(z) + F(z), where ¢g(z) is an even polynomial of
degree 4 that vanishes at the origin, and F(z) < Ct~>|z|®. The Fourier transform of e~/ —
e~ v+l /(1 4 w/v) is given by

8 8mv 487 viw
- > . (.7
M +p»)? (V+w)?+p)? T (v+ ) +p?)?
Moreover, the Fourier transform of g (z)e~ "+ ig
87t(v+ w)
iVy)———— 3.8
1) G r o 2 68

whose absolute value, if vt > C), can be bounded above by const - v~ [(v 4+ w)? + p*] >
(here we used that ¢ is assumed to be even and that its m’th order coefficients are bounded
by Ct!=™). Finally, we claim that the Fourier transform of F(z)e~ "+ is bounded by
const - v 3 [(v 4+ w)? + p?173. To see this, note that F(z)e~ T is a C® function, and
hence

(V+w)’+ pz)3 / F(z)e~Vtollzlg=ipz gy — / [((v +w)?— A)3 F(z)e_(”“’)‘z'] e Py,
3.9)

It is not difficult to see that the latter integral is bounded by Ct—>v=3. After collecting all
the terms, we arrive at the statement of the lemma. O

Below, we shall choose the parameters ¢ and £ as functions of p, Ry and ay. We shall
choose them in such a way that r < 1 and £ > R,. Moreover, we will have conditions of the
form

£t t 1 R
= o, %$7—>0, and o =1 (3.10)
0 0 paoy/ pag 0
as paj — 0, such that the error in the specific ground state energy corresponding to the term

Nw(t)R/(2¢) in (3.3) is much smaller than Npag,/ ,oag, which is the precision to which we
want to compute the ground state energy.
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922 A. Giuliani, R. Seiringer

Consider now the n-particle Hamiltonian

R
§ A, + W 3.11)
0

where we have introduced the Neumann Laplacian A(Q]r)n , in the cube Om ;= Om + 2 and
the potential

n
Wo(X1,...,X,) = Z wR (X +2,X; +12) — pZ/ dywy(X; + 2,y +12)
l<i<j<n =174
1
—1——,02// dxdng(x—i—z,y%-z). 3.12)
2 AxA
Denoting by E7, , the ground state energy of the Hamiltonian Hy , in (3.11) considered as

a bosonic Hamiltonian for n particles confined to the cube Qy, ., and using Lemma 3.1, we
find that the ground state energy Ej of (1.1) can be bounded below by

. aow(f)R 240 _p
Ey>4 £ gr o NyLeWR Q0 -L/eR)
0 wNpay + Z / i 1<1rIll<N mz— N ZZRS const N Rge
me(l,... M]3
(3.13)
Note that all the Hamiltonians Hy , are unitarily equivalent to
G) yaOR A - A
ZA Y wpGix)—p Y | dywp(x;.y)
l<i<j<n j=174
1, A
+=p dxdywy(X,y) (3.14)
2 AxA

where Afzj ) denotes the Neumann Laplacian for the j-th particle in the cube [—£/2, £/2]3.
As a consequence, in the L — oo limit, we have reduced the problem to studying the Hamil-
tonians H;' on L*([—¢/2, £/2]*"), given by

ya R -
ZA(J) 0 |: Z wg (X, X;) —,022/z dy wr(Xj,y)
j=1"F

1<i<j<n

1
41 f / dxdy wg(x, y)} (3.15)
2 R3xR3

with wr(x,y) = x (x€~H)e * ¥Ry (y¢=1). If E} is the ground state energy of H;', from
(3.13) we infer that

n

E 1 )R
lim —2 > 4mpag + — inf E} — dow (1)

1
N—oo N p03 n 2ue3 (3.16)
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The Ground State Energy of the Weakly Interacting Bose Gas at High 923

In the remainder of this paper we shall study the Hamiltonians (3.15). For future reference,
let us finally note that in second quantized form H;' can be rewritten as

n t WOR 1
H, Zp apap + —7— |: Z wpq ,“,a auav —pﬁ Zwopoqa aq + p 2¢8 Woo, 00]
pa,nv Pq
(3.17)

where the sums over the momenta run over the values p = (py, p2, p3) such that €p; /m €
Ly, ay,, ap are bosonic creation/annihilation operators corresponding to the orthonormal ba-

sis ¢p(X) = cp€’3/2 1_[3:1 cos(pjﬂﬂ" (x; +£/2)), and the coefficients Wpq ,» are defined
as

P / / dxdy we(x, )¢5 X ba () 0 (¥). (3.18)

3.2 Scalings

Before proceeding with the proof of the lower bound, let us make a few remarks on the
choice of the parameters ag, Ry, £, . We recall that our purpose is to compute the ground

state energy of (1.1) up to terms of the order Npao\/p>a3 , asymptotically as ¥ = paj — 0.
In the following we shall choose ay/Ry ~ yl/2-d, ao/l ~ Yo+1/2 and t ~ Y7, where d, b
and t are positive scaling exponents. [Here by f ~ g we mean that C™'g < f < Cg, for
some universal constant C.] We shall require d < 1/4. Note that the conditions b, d > 0 and
d < 1/4 imply in particular that gy < Ry < £ and ay/l < \/p»ag (two conditions that are of
course necessary to be able to neglect finite size effects due to the boxes of size £) and that
ap/ Ry > \/pTzS > (ap/Ro)? (a condition that is necessary for the Bogoliubov approximation
to be valid, as explained in the Introduction). In order to be able to prove that the various
error terms in our estimates are much smaller than N, pao\/TaS we will be forced to require

that b, d, T are small enough and that they satisfy a number of inequalities, some of which
will now be discussed. Such inequalities will be satisfied by proper choices of b and 7, as
long as d is small enough.

1. We require pRg > 1, that is 0 < d < 1/6. Note that under this condition we also have
ao/Ro >/ pai > (ao/ Ro)>.
2. We require Zthl > 1,asin (3.10),sothatb+d > t.

3. We require agR, ' ¢2t! < pag,/pa3, as in (3.10), so that 2b —d — 7 > 0.
4. Noting that the contribution from the potential energy per particle in H; is expected (on
the basis of Bogoliubov theory) to be of order nagR,, ! relative to the main term, we

require both that tag R, Uand ao(R™! — Ry 1y are much smaller than A/ ,oag, in order to

guarantee that the errors produced by the presence of y in front of the potential energy
and by the replacement of Ry with R are negligible. These conditions imply T > d and
2b+d>rt.

Further requirements will be discussed below.
3.3 A Priori Bounds on n and n

As a first step in our argument, we shall derive preliminary bounds on the number of particles
minimizing E} and on the average number of particles (72..) outside the condensate. [Here
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924 A. Giuliani, R. Seiringer

the operator 71, is defined, in second quantized form, as 71, = Zp 20 a;ap.] First of all, note
that 0 > inf,, <y E}, so we can restrict our attention to the values of n such that Ey <0.
As proved in the next lemma, such values of n cannot be too small, namely they all satisfy
n > cpt? for a suitable constant c. We can thus assume, without loss of generality, that
n > cpt? in the following.

Lemma 3.3 If¢/R and t~" are large enough, then H!>0ifn < pl3/4.

Proof From the definition of H;' we see immediately that

H > WOR[ Z/ dywg(x;,y) + —// dxdywg(x, y)}

R4
> 2 y‘;‘; (=4np + p20%), (3.19)
0

where we used that sup, f wr(X,y)dy < 87 R? and that, for ¢/R and t~! large enough,
[[ dxdywgr(x,y) > 47 R*¢>. This proves the lemma. O

A similar argument allows us to get a preliminary bound on the average number of parti-
cles outside the condensate (7).

Lemma 3.4 Ift and (Ry — R)RO_1 are small enough, then for any state such that (H;') <0,
the expectation of the number of excited particles satisfies (n,) < constnaoﬁzRg 3

Proof Using the fact that the potential e~X/® is positive definite, we obtain

" R
H' > S AW _ Y4 wr(X;, X;). 3.20

e = ; 14 2R4 Z Rr( ( )
The claim of the lemma follows by using (—Y7_, AY)) > (7, )72/€2 and the fact that
wr(x,x) < 1. O

Of course, in order for the bound in Lemma 3.4 to be useful, it must be aoﬂzRO_ 3k«
In the following we shall impose this condition by requiring that, in terms of the scaling
exponents introduced in the previous section, 2b 4 3d < 1/2. We shall define vy = 1/2 —
2b — 3d, so that our preliminary a priori bound reads (7i,)/n < Y.

3.4 Bound on the Unimportant Part of the Hamiltonian
Motivated by Bogoliubov’s computation of the ground state energy, we would like to be able

to neglect in H;' all terms but those containing precisely two a , with p £0. Let g = all,ao
and let us rewrite (3.17) in the form

yaoR
Zp ayap + ——- Z Wpq, oo(a a aoao + Za;agaoaq + agagapaq)

4
2Ry p.q#0

WIOR A ~ 3.2 N

— 1w ng—pl) —n

2R |: 00.00 [ (7o — p£) o
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+2) o[ (o — p€)ajan + agay(io — )]
p#0

+2 Z ﬁ)po,qoa;aq(ﬁo —pl+2 Z ﬁ)pq,uo(a;a;auao + aga;aqap)
p.q#0 p.q.n7#0

+ ) @pq_ﬂva;a;auau]. (3.21)
p.q. v 70

We would like to show that all terms but those in the first line are negligible. Let us then
estimate all these contributions in terms of 72, and n — 3. We shall use, without proof, a
number of lemmas from [7]. Note that from now on we shall always assume valid the condi-
tions discussed in Sect. 3.2 above. Note also that g = n — 7 and [Wpq u»| < const R*/£3.

1. The first term in the second line of (3.21) satisfies

yaoR R 32 A ap . 32 nap
2R Woo,00 [ (o — p€*)* — i1g] > const £—3(n0 — p£*)? — const i (3.22)

and, for any ¢ > 0

VGOR ~ A 3.2 ~
w ng— pl) —n
2R 00.00 [ (o — p£7) o
~2
~ apn aopn
> w 1 —&)(n — pt*)? — const — — — const —. 3.23
=R 00,00 ) —ptl7) 7 e B (3.23)

2. By Lemma 5.5 of [7], the second term in the second line of (3.21) satisfies for any ¢ > 0

yaoR N . .
“RY Z Wpo.00[ (o — pZ3)a;a0 + agap (i — 0]
0 pz0
> —const nf % — consteZ—g(ﬁo — pl)? — constsZ—? (3.24)
and
yaoR A A 3y, F oA 3
T Z Wpo.00| (o — pt )ayap + agap(fio — pl )]
0 px0
yaoR . N . aon
> Z Wpo,00[ (n — pZ3)a$a0 + agap(n — pt)] — constanrF
0 px0
}’Ali ap
— const e (3.25)
3. By Lemma 5.3 of [7] the first term in the third line of (3.21) satisfies
yaogR . e 3 ap. 4 . aph?,
; > ipo.goapaq(i — pl?) > —const 3 [p€* —nlyit; —const == (3.26)
p.q#0

where [7]; = max{z, 0}.
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926 A. Giuliani, R. Seiringer

4. By Lemma 5.6 of [7] and its proof, the second term in the third line of (3.21) satisfies for
any ¢ >0

yaoR
E wpq,w(a auao—l—aoa | aqap)
0 P.q. A0

aopn .. lapny 1yagR .
> —conste E—3n+ constE? - R4 Z wpqﬁﬂva;a;auav. (3.27)
P.q. 1L, v#0

5. The term in the fourth line of (3.21) satisfies

aoR aph?®
V S D g majajaga, < const (3.28)

0 P.q.1t,v#£0

This follows immediately from the fact that wg(x,y) < 1.

Remark According to Bogoliubov’s theory we expect that in the ground state (7.) ~
n./ paj. From the upper bound in (3.28) we thus expect that the contribution to the ground

VaoR

3
. tal . 2 ]
state energy from the quartic term > P v 20 Wpq, polplgdpdy 18 at MOSt ~ n~pdg 5.

In order to show that Bogoliubov theory is asymptotically correct up to terms of order
npag pag we shall require such a bound to be much smaller than npag,/ pag. For n ~ p&3
and in terms of the scaling exponents introduced above, this implies ¥!/273=3¢ « 1, that is
3b+3d < 1/2. In the following we shall assume this condition valid. It will be convenient to

summarize here all the requirement we asked for so far on the scaling exponents introduced
in Sect. 3.2:

1
2b—d>1t>d and g>b+d>r. (3.29)

From now on we shall always assume that these relations are valid and that Y is small
enough.

3.5 The Quadratic Hamiltonian

In this section we consider the main part of the Hamiltonian. This is the “quadratic” Hamil-
tonian considered by Bogoliubov. It consists of the kinetic energy and all the terms with the
coefficients Wpq 00, Wo0,pq Wpo,0q- and Wop g0 With p, q # 0, i.c.,

yaoR

Hp = Zp a“, ot 2R0 Z lbpq,oo(aga;aoao + Za;agaoaq + agagapaq). (3.30)

p.q#0

In order to compute all the bounds we find it necessary to include the first term in the second
line of (3.25) into the “quadratic” Hamiltonian. We therefore define

Zpa ap + prooo (n—pE Yal ao—l—aoap(n—pk )]
Ry p#0
)/doR i t ot
Z Wpq, oo(a al q@0do +2apa0aoaq + agagapag). (3.31)
R P.q#0
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The Ground State Energy of the Weakly Interacting Bose Gas at High 927

Note that Hp = Hy in the neutral case n = p€>. Our goal is to give a lower bound on the
ground state energy of the Hamiltonian Hy.
For any k € R? denote y;x(x) = ¢’**x (x/£) and define the operators

blt = Z(¢p7 Xé,k)a;ao and by = Z(X“" ¢p)a3ap. (3.32)

p#0 p#0

Note that they satisfy the commutation relations

[Dx, bl/] =no(Xek> Xew) — Z (Xex> p)(Pqs Xé,k’)a;ap —o(xex 90) (o, xex). (3.33)
p.q#0

Using Lemma 6.2 of [7] we find that

. dk k|
<Z |p|2al',ap> > —-C't)y’n! fR3 (27)? [K|? 1|L (|1z;3)_2 (biby) (3.34)
P

for a suitable constant C’ and for all states with particle number equal to 7.
Concerning the potential energy terms, note that we may write

dk -
wr(X,y) = /R3 WVR(k)XZ,k(X)XZk(Y)a (3.35)

where VR (k) = 87 R*[1 4+ (kR)?]2. The last two sums in the Hamiltonian (3.31) can there-
fore be written as

yaoR
Ry

/ dk ‘>R(k)|:(n_pe3)£3/2()((kz)b + 1" (k0)by)
3 (271’)3

1 P agR R
+ 5 (ibi+ b b+ bibL + bkb,k)} - VR—‘L 3 dpquaag.  (3.36)
0 p.g#0

Thus, we have for states with particle number equal to n that

ya R
/ Ty (ho(k)) — 7= Z Bpa.00 (aaq). (3.37)
p.q#0
where
1—C't)? Kk|* .
hoty = L= KL bt b

2n k| + (££3)2

R .
+ 2y 13 Ve[ = )R (R KO (b + bos) + 27 (6O i+ b))

0
+ bibi+ b b+ bibT 4 bib_y]. (3.38)

In order to give a lower bound on /4 (k), we can use Bogoliubov’s method, in form of
Theorem 6.3 of [7]. This theorem states that, for arbitrary constants A > B > 0 and « € C,
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928 A. Giuliani, R. Seiringer

the inequality

Albgbi+ b bi) + Bbib  + bib_i) + (b + b_i) + k* (b + b' )

> —%(A VA =B (b, b1 + b, b D) — j'i'; (3.39)
holds. Note that in our case
(b, bi,1 < g / dx x (x/0)* < nt>. (3.40)
With the notation
=7 ;2; Vi (k),
)2 4
PR aan
= 2;4 55 Ve (0 — p) 2 (ke)

we thus obtain that on the subspace of n particles

2 2
ho) = ~nt(Ac — A} — B) - "i"B . (3.42)
k k

Moreover, since

.
> ipqnaiag = / E / dywg(x, y)[Z%(x)ap] [Zgbp(y)ap]

p.q#0 p#0 p#0
il 3
8T R’
f / dywg(x, y)[Z%(x)aP} [Z«ﬁp(x)ap} Ay (343)
p#0 p#0
we have that
R
% ﬁ)pq’ooa;aq < COHStn%. (3.44)
0 pg#0
Using (3.37), (3.42) and (3.44), we find that, on the subspace with n particles,
dk 2|k |* ao
Hy>— C(A— AL - B2 — constn— 3.45
[ R3 ()3 {n (‘Ak 'Ak k) + Ak + By cons nz% ( )

Now, using Ay > By and the definitions of By, kx, we get

dk 2|y </ dk iy |?
R

R3 (27‘[)3 A+ Bx — Jrs3 (271’)% By
aoR dk .
- y2£4 (n— pt*)? / Gyt VRO KOP
a
= y2;4 (n — p€*)*Wo0.00- (3.46)
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As a result, on the subspace with n particles,

R
ya04 (n — p®) o000 — constn@ (3.47)

Hop>—nl — »
e= 2R{ IE

where

1 dk
I=— [ 100 - V7007 =07,

2p ) Qm)}

ot Ik|* yaoRp »
k)= (1-C'r*E= Ve (K), 3.48
f&) =( ) KR+ (67)2 + R: = (K) (3.48)

YaoRp -
g(k) = ;4 Ve (K).

0

Similarly, the Bogoliubov Hamiltonian in (3.30) on the subspace with n particles admits the
lower bound

Hg > —nl —consth—g. (3.49)

Note that f > g > 0 implies f — /f2 — g2 < min{g, g2/(f — g)}. Thus clearly I can be
bounded as / < (27)~3(2p)~! ['dkg(k) < constagR, so that

Hp > —constn%. (3.50)
Moreover, if n < Cp#3, we find
1 dk dk k)2
Ll [
20 Jkp<age (27 kP2zage (270)7 f (k) — g(k)
3 2 [T 1 3y-2
< const { pa a; + pa, dk——— (1 + (klt’)™
< paoy/ pag po/M [(kR)2+1]4( (ker*)~?)
< const L) FU. R\’ (3.51)
a as + — — . .
- pao VP T R JPagR \ €13

If the scaling exponents satisfy
2b+d — 61 >0, (3.52)

then the last expression in (3.51) can be bounded from above by const pao%’. Hence, if
n<Cpt?and2b+d — 67 >0,

Hy > —constnpao%. (3.53)
3.6 Improved Bounds on n

Using the bounds derived in the previous sections, we shall now get an improved bound
on n, which implies that for states with (H;') <0, n cannot deviate too much from p03. In
order to bound (3.21) from below, we use (3.22), (3.24), (3.26), (3.27) and (3.50) [note that
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we shall use (3.27) with & replaced by £~!]. The result is that, for some positive constants ¢
and C, we have

ap . R
H} = (¢ = Co)Zin— pE) + (1 = CoOLor " g mafalanay
0 P.q.1L,v7£0
nag n+ nay 3 aon 4 ao
e % e e R R
{z* e e ' f e3+ﬁp z R3 +”R3} (3-54)

for some & > 0. Choosing & = min{1, c}/(2C), using i, <n, Y, o Wpq, ,“,al*, (‘lauav >
0 and recalling that, by Lemma 3.3, n < o3 /4 implies H;' > 0, we have, for some new
constants ¢’ and C’ and for any state with (H;') <0,

2
/ ap A n
OZ(Hg)>C—<(no—,01Z %) — Z3 {n(n+)+m} (3.55)
and, therefore,
(I’l - ,0£3)2 (fl+> 1
BT < const - + m . (3.56)
Here, we used ((77g — p£?)?) > (n — p£?)> — 2n{i,). Now, let us recall from Sect. 3.3 that,

in terms of the scaling exponents b, d, we have (i,)/n < Y123 and (PR ' ~ yi-3d,
so that
3)2

(n=p <constY", (3.57)

n2

where vy = 1/2 — 2b — 3d as before. Equation (3.57) can be rewritten as
|n — p€?| < constpt?y™/2. (3.58)

In order to get the bounds above we sacrificed all the kinetic energy in (3.21). Of course
this is not necessary: we can decide to sacrifice only half of it and we would still get the
same bounds, only with different constants. If we proceed in this way we see that for any
n-particle state such that (H;') <0,

Z |p|2(a;ap) < constnpagY™. (3.59)
P

3.7 Localization of n

The idea now is to use the improved bound on n together with the bounds in previous
sections in order to find an improved bound on the energy of the ground state. In order to
do this it is clear from the bounds in Sect. 3.4 that we need to estimate (ﬁi). Since we have
bounded only 7. so far, we would like to argue that (7% ) ~ (i14)?. In this section we shall
discuss how to do this. We shall utilize the following theorem, which is Theorem A.1 of
[7]. [The kth supra- (resp. infra-) diagonal of a matrix 4 is the submatrix consisting of all
elements a; ;1 (resp. a;4x.;)]-

Theorem 3.1 Suppose that A is an N x N Hermitean matrix and let A*, with k =

0,1,...,N — 1, denote the matrix consisting of the kth supra- and infra-diagonal of A.
Let € CN be a normalized vector and set dy, = (W, AXY) and A = (¢, Ay) = ,1(:)1 di
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(¥ need not be an eigenvector of A). Choose some positive integer M < N. Then, with M
fixed, there is some n € [0, N — M| and some normalized vector ¢ € CN with the property
that ; =0 unlessn +1=<j<n+M (i.e., ¢ has length M) and such that

M—1 N—-1

c
¢ A$) <h+ -5 Zk2|dk| +C Y ldil, (3.60)

k=M

where C > 0 is a universal constant. (Note that the first sum starts with k = 1.)

From this theorem we can get a localization bound on 7 in the following way. Consider
a normalized n-particle wavefunction ¥, which we may write as ¥ = an:o ¢V, where
forallm=0,1,2,...,n, ¥, is a normalized eigenfunction of i, with eigenvalue m. We
now consider the (n + 1) x (n + 1) Hermitean matrix .4 with matrix elements A,,,, =
Wy, H}W,0).

We shall use Theorem 3.1 for this matrix and the vector ¥ = (cy,...,c,). We shall
choose M in Theorem 3.1 to be of the order of the upper bound on (7, ) derived in Lemma
3.4, e.g., M is the integer part of nY". Note that, if n ~ pf3, we have M > 1. With the
notation in Theorem 3.1 we have A = (¥, Ay) = (¥, H/W). Note also that because of the
structure of Hj' we have, again with the notation from Theorem 3.1, that d, =0 if k > 3. We
conclude from it that there exists a normalized wavefunction W with the property that the
corresponding 71, values belong to an interval of length M ~ nY ™ and such that

(W, Hy W) > (U, H}' V) — const ———(|di| + |da)). 3.61)

2Y2v
We shall now bound d; and d,. We have d; = (¥, H/(1)W), where H/ (1) is the part of the
Hamiltonian H;' containing all the terms with the coefficients tpq, .y for which precisely one
or three indices are (0. These are the terms bounded in (3.24) and (3.27). These estimates are
stated as one-sided bounds. It is however clear that they could have been stated as two sided
bounds. Using in addition the bound (3.28) and ﬁi < nn, then, for any ¢ > 0 and some
positive constant C, we get

Ny na . a aonn
|d,|§c(\v,[f£—;’+ (no—pé3)2+8£—2+8%]‘11>. (3.62)

If W satisfies (¥, Hy'W) <0, we can use Lemma 3.4 and (3.58) to conclude that

y®
ldi| < Cnpag ( + eY”“H“) . (3.63)
&
Optimizing over ¢ > 0 yields the bound
d\| < CnpagY"~2 D = Cppayy 7-30-39 (3.64)

For d>, we obtain

yaoR
|d2|§< 'SR > pq00(aja aoao—i-aoaoapaq)\ll)
0 p.a#0

agR R ~
- ( [Zp ala, + VR°4 > wpq,ooa;agaoaq]qJ) — (W, HpV)  (3.65)

0 p.gz0
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where
7y t yaoR - F ot
Hgp = mepap + SRE Z wpqqoo(—a;a];aoao + 2a,agapaq — agagapaq) (3.66)
P 0 p.azo

is an operator unitarily equivalent to Hg. (It is obtained from it by replacing a;, ap by

—iag, iap, respectively.) Of course ﬁB satisfies the same lower bound (3.53) as Hp. It is
not difficult to see that

yaOR R + 47T Y ao R4 A
0= > ipgmlajajaoay) < —5 i) (3.67)
0 p.gz0 0

(compare with Lemma 5.4 of [7]). If ¥ satisfies (W, H/W¥) < O then, using (3.65), (3.67),
Lemma 3.4, (3.59) and (3.53), we get:

|d>| < constnpag { YV + %} < constnpagY ™. (3.68)

Putting togetheNr these bounds we find that if (W, HW) < 0 then there exists a normalized
wavefunction W with the property that the corresponding 71, values belong to an interval of
length M ~ nY™ and such that

(v, HV) > ({IVI, Hg’ql) - const%Y”O’%("*d)
n Yy
> (U, H}'W) — CnpagY™, (3.69)

where o = —vo+ 1+ %b — %d = % + ?b + %d. Since po > 1/2, the error term in the
last line is much smaller than npag,/ pag. Without loss of generality, we may assume that
(\TJ, H;\TJ) < 0, in which case Lemma 3.4 implies that (\Tl, ﬁ+{IVJ) < constnY". We also
know that the possible 71, values of W range in an interval of length M ~ nY "0, This implies
that if (¥, H'W¥) < —CnpagY!/? then the allowed values of /i, for ¥ are less than CnY™,
for a suitable constant C. In particular, (73) < Cn*Y*" in the state W. Hence, as far as the
derivation of a lower bound on the ground state energy is concerned, it is not a restriction
to assume that (ﬁi) ~ (fz+)2. This fact will be used in the next section to derive improved
lower bounds on the ground state energy.

3.8 Improved Bound on the Ground State Energy

Let W be the ground state of H;. In this section we shall get an improved lower bound on
(¥, H} W) under the assumption that (¥, H;W) is small enough such that (3.69) implies

that (\3, H[’@) < 0. Note that if this assumption is violated then the desired bound on the
ground state energy would automatically be true. Hence, as discussed at the end of previous
section we know that

(W, H'W) > (H}') — CnpagY" (3.70)

where the average () is over an n-particle state with allowed values of 71, smaller than
CnY". Using (3.21), (3.23), (3.25), (3.26), (3.27) [this time precisely in the form stated,
without replacement of & by ¢~'] and (3.28), we find that
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. YaoR 32 ap (M%) aon . aon
(Hy) = <HQ>+—2R3 Woo,00(1 —&)(n — p€”) _C[E—s e 8(n+)—£3
ap 3 ap(Ay)  aon Lag(y) | 1ao(i%)
+ E—3|” —pl(ny) + VE 56—3(’1+) + PRE SR (3.71)

Now, if 0 < & < 1, using n,. < CnY™, (3.47), and (3.58), we get from the last inequality
that

; 1
(H}'Y > —nl — Cnpayg [SY”O Ly3v4 —Y2“0’3b’3"]. (3.72)
&
Optimizing over ¢ yields
(H}') > —nl — CnpapY*®, (3.73)
where oy = 3vg — 3b — 3d = 3 — 3b — 6d.1f
3 9 1
i Eb —6d > > (3.74)

the error term npagY*! is much smaller than npagY '/? and, therefore,
E} > —nl —npago(Y'/?). (3.75)

We are left with estimating the constant / defined by (3.48). It is not difficult to see that,
under the assumptions made so far on the scaling exponents,

B a, 128 3 3
I= 4npa0<a— BTN pag +o(y/paj) ). (3.76)

0

The conditions (3.29), (3.52) and (3.74) on the scaling exponents that we required for the
proof to work can be summarized into the following conditions:

1
2b+d>6t, t>d, 8>3b+4d. (3.77)

It is easy to check that if d < 1/69 then all these requirements on the scaling exponents can
be satisfied.
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